تشخیص بیماری عروق کرونر قلبی با استفاده از درخت تصمیم C4.5

نویسنده

  • صباغ گل, حامد کارشناسی ارشد مهندسی کامپیوتر گرایش نرم‌افزار، مربی، عضو هیات علمی گروه کامپیوتر، دانشگاه پیام نور، ایران
چکیده مقاله:

مقدمه: یکی از شایع‌ترین بیماری‌ها و علل مرگ و میر در دنیای امروز بیماری‌های قلبی است. استفاده از تکنیک‌های داده‌کاوی برای ایجاد مدل‌های پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمک کننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روش‌های پیشگیری و تشخیص این بیماری پرداخته می‌شود. روش: این پژوهش از نوع کاربردی و توصیفی می­باشد. در این پژوهش از داده‌های استاندارد UCI و مجموعه داده Cleveland استفاده نمودیم. این پایگاه داده شامل 297 رکورد می­باشد. تجزیه و تحلیل به کمک نرم‌افزار Weka با به­کارگیری متدولوژی CRISP3 انجام شده است. در بخش مدل‌سازی درخت تصمیم C4.5 با به­کارگیری متغیرهای ورودی و تعیین متغیر هدف ایجاد شد. نتایج: با توجه به مدل استفاده شده مشخص شد که به ترتیب متغیرهای سطح بالای کلسترول، جنسیت، سن بالا، بالا بودن ماکزیمم ضربان قلب، اسکن تالیوم بالاتر از 3 و نوار قلب غیرنرمال بیشترین تأثیر را در ابتلا به بیماری عروق کرونر قلبی دارا هستند. همچنین به کمک درخت تصمیم ایجاد شده، قوانینی استخراج شده است که می‌تواند به عنوان الگویی در جهت پیشگویی احتمال ابتلا افراد به بیماری عروق کرونر قلبی استفاده شود. صحت مدل ایجاد شده با استفاده از درخت تصمیم بیش از 80 درصد بوده است. نتیجه‌گیری: با توجه به محاسبات انجام شده، نرخ دسته‌بندی برابر با 72/6% و دقت الگوریتم C4.5 برابر با 80/2% به­دست آمد که در مقایسه با نتایج مطالعات انجام شده در حوزه داده‌کاوی بیماری قلبی، دقت به­ دست آمده الگوریتم پیشنهادی قابل قبول است.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص بیماری دیابت نوع2 با استفاده از درخت تصمیم C4.5

مقدمه: یکی از شایع‌ترین بیماری‌ها در دنیای امروز بیماری دیابت است و سالانه شیوع دیابت در سطح جهان حدود  درصد افزایش می‌یابد. استفاده از تکنیک‌های داده‌کاوی برای ایجاد مدل‌های پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمک‌کننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روش‌های پیشگیری و تشخیص این بیماری پرداخته شد. روش:  در این پژوهش کاربردی- توصی...

متن کامل

تشخیص بیماری دیابت نوع2 با استفاده از درخت تصمیم C4.5

مقدمه: یکی از شایع‌ترین بیماری‌ها در دنیای امروز بیماری دیابت است و سالانه شیوع دیابت در سطح جهان حدود  درصد افزایش می‌یابد. استفاده از تکنیک‌های داده‌کاوی برای ایجاد مدل‌های پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمک‌کننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روش‌های پیشگیری و تشخیص این بیماری پرداخته شد. روش:  در این پژوهش کاربردی- توصی...

متن کامل

تشخیص بیماری تب کریمه‌کنگو با استفاده از درخت تصمیم C4.5

مقدمه: با شروع فصل تابستان، بیماری بین انسان و حیوان، یعنی تب کریمه‌کنگو به سرعت شیوع پیدا می‌کند. تشخیص این بیماری با استفاده از آزمایش‌های لازم، در کمترین حالت زمانی حدود یک هفته به طول می‌انجامد. روش‌های داده‌کاوی و یادگیری ماشین متعددی برای ایجاد مدل‌های پیشگویی‌کننده جهت شناسایی افراد در معرض خطر وجود دارد. در این پژوهش از درخت تصمیم C4.5 به دلیل سادگی و کارآمدی‌‌اش به منظور تشخیص این بیما...

متن کامل

تشخیص بیماری تب کریمه‌کنگو با استفاده از درخت تصمیم C4.5

مقدمه: با شروع فصل تابستان، بیماری بین انسان و حیوان، یعنی تب کریمه‌کنگو به سرعت شیوع پیدا می‌کند. تشخیص این بیماری با استفاده از آزمایش‌های لازم، در کمترین حالت زمانی حدود یک هفته به طول می‌انجامد. روش‌های داده‌کاوی و یادگیری ماشین متعددی برای ایجاد مدل‌های پیشگویی‌کننده جهت شناسایی افراد در معرض خطر وجود دارد. در این پژوهش از درخت تصمیم C4.5 به دلیل سادگی و کارآمدی‌‌اش به منظور تشخیص این بیما...

متن کامل

بررسی تأثیر پارامترهای پیوسته در تشخیص بیماری عروق کرونر قلبی با استفاده از شبکه‌های عصبی مصنوعی

Background & Aim: Coronary artery disease is among the common diseases in societies. The best method of assessing coronary artery diseases is through angiography. This study aimed at investigating the effect of disease parameters on the diagnosis of coronary artery disease using artificial neural networks. Methods: This analytic study included a database of 200 non-attributable records. In t...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 4

صفحات  287- 299

تاریخ انتشار 2017-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023